
(NASA Contractor Report 182039
~ ICASE Report No. 90-34

I ICASE
RUN-TIME PARALLELIZATION AND SCHEDULING
OF LOOPS

Joel H. Saltz
Ravi Mirchandaney -' T '4

Kay Crowley JUN 2 6 1990

Contract No. NASI-18605
May 1990

Revised version of ICASE Report No. 88-70

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

DL'R3rno ... q-M ,1

NASA Dun U -

N!i n'ral Anrnn,- Iir'j nnd
! jvwn Admiri,;ftinj()r

Langley Research Center
f lrpfon, Virginia 2,'6C 5225

1)

RUN-TIME PARALLELIZATION
AND SCHEDULING OF LOOPS'

Joel H. Saltz

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA 23665

Ravi Mirchandaney

Kay Crowley

Department of Computer Science

Yale University

New Haven, CT 06520

~ABSTRACT

.this paper, we study run-tirne methods to automatically parallelize and schedule it-

erations of a do loop in certain cases, where compile-time information is inadequate. The

methods * in this paper involve execution time preprocessing of the loop. At

compile-time, these methods set up the framework for performing a loop dependency analy-

sis. At run-time, wavefronts of concurrently executable loop iterations are identified. Using

this wavefront information, loop iterations are reordered for increased parallelism.

-. L A e utilize symbolic transformation rules to produce: (1) inspector procedures that per-
- form execution time preprocessing and (2) executors or transformed versions of source code

loop structures. Thesetransformed loop structures carry out the calculations planned in the

inspector procedures.' We present performance results from experiments conducted on the

Encore Multimax. These results illustrate that run-time reordering of loop indices can have

a significant impact on performance. Furthermore, the overheads associated with this type of

reordering are amortized when the loop is executed several times with the same dependency

structure. "

'Research supported by the U.S. Naval Office under Grant N00014-86-K-0310, by the NSF under Grant
ASC-8819374, as well as by the National Aeronautics and Space Administration under NASA Contract No.
NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science and
Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.

1 Introduction

Dependencies between various iterations of a do loop cannot always be characterized
during program compilation. This inability to characterize dependencies can inhibit ex-
ploitation of potential parallelism by means of the usual types of parallel loop constructs,

the doall or doacross loops [15] [4]. Doall loops do not impose any ordering on loop itera-
tions while doacross loops impose a partial execution order so that some of the iterations
are forced to wait for the partial or complete execution of some previous iterations. Typ-
ically doacross loops make use of a-priori knowledge of inter-iteration dependencies to

carry out required synchronizations.

Parallelization carried out during compilation is necessarily conservative; if it cannot
be shown that loop iterations can be performed concurrently, the loop iterations are se-
quentialized. Many loop nests defy compile-time parallelization because dependency pat-
terns are determined by variables or arrays initialized during program execution. Compile-
time analysis and parallelization may also fai when non-linear expressions characterize
the dependencies.

The methods we present in this paper involve execution time preprocessing of loops.

We describe a form of execution time preprocessing that is able to transform a loop
having inter-iteration dependencies into a sequence of doall loops. At compile-time, these
methods set up the framework for performing a loop dependency analysis. At run-time,
wavefronts of concurrently executable loop iterations are identified. The original loop L
is transformed into two loops, L, and L 2. The new outer loop L, is sequential, and the

new inner loop L 2 involves all indices assigned to each wavefront. The transformation we
present is analogous to loop skewing, except that the identification of parallelism is carried

out during program execution [25]. For some loops, reordering iterations can reduce the

deleterious effects of inter-iteration dependencies on performance.

In all of the situations described above, we use symbolic transformations to produce:

(1) inspector procedures that perform execution time preprocessing and (2) executors or

transformed versions of source code loop structures. These transformed loop structures
carry out the calculations planned in the inspector procedures.

Characterizing the cost of execution time preprocessing is a critical aspect of this

research. One clear requirement is that the execution time preprocessing itself be paral-
lelizable. The wavefront scheduling mechanisms are based on a topological sort, which can
be parallelized using a version of a doacross loop. One method called global scheduling, C
performs a topological sort of the index set and assigns indices to processors in a way that

evenly partitions the work in each wavefront. In each processor, indices are scheduled in

order of increasing wavefront number. The other method called local scheduling, starts out

with a fixed assignment of indices to processors and simply rearranges the local ordering

of those indices to improve parallelism.

1t I A
G14

Some of the related work in this field is described next. Lusk and Overbeek [12] imple-
ment a self-scheduled mechanism to dynamically allocate work to processors, however this
work is restricted to doall loops. Polychronopoulos and Kuck [17] are concerned with the
efficient execution of doall type loops using run-time self-scheduling. While the efficacy of
self-scheduling for certain classes of problems on shared memory machines is demonstrated
in that paper, loops that are not doall are not addressed. Tang and Yew[24] describe a
mechanism to execute multiple nested doall loops, using self-scheduling. It is shown that
for certain types of problems, self-scheduling is more efficient than prescheduling using
static assignment of loop iterations to processors. Krothapalli and Sadayappan[11] de-
scribe a method which is able to remove anti- and output dependencies, by performing
an analysis of the reference pattern generated and using multiple copies of variables in
order to simulate a single assignment language. Cytron[4] discusses the problem of how
to ,'-hedule doacioss loops with lexically bacKward dependencies by introducing delays in
appropriate places in the code to ensure correctness. A linear programming problem is
formulated and solved in order to calculate the minimum delays.

Loop restructuring has been used successfully to allow parallelizing compilers to im-
prove parallelism and enhance performance in memory hierarchies [15], [16], [1], [5]. Gen-
eralization of some of the examples described in this paper relies on a type of doacross
construct that for some kinds of loops itself requires execution time preprocessing. De-
tails and experimental results pertaining to this preprocessed doacross can be found in
[21]. Methods of execution time loop analysis for distributed machines that are in some
respects analogous are described in [13], [10], [20]. Some numerical algorithms have been
modified using schemes that reorder operations to increase available parallelism, [2], [18],
[31, [7], [191.

As in [16], we define the following types of dependencies between two statements
S, and 52. In these definitions, we assume that S1 is executed before S2. A true or
data dependency exists between statements S1 and S2, if statement S 2 uses a variable
assigned by statement S1. An antidependency exists between the statements when S
uses a variable that is assigned by S2. An output dependency exists when non adjacent
statements S, and S2 assign the same variable.

The remainder of this paper is organized as follows: In Section 2, we present the
doconsider loop and the transformations required to integrate this loop in a compiler
front-end. A mathematical model which compares the performance of some scheduling
strategies is presented in Section 3. Results from experiments conducted on the Encore
Multimax are given in Section 4 and we summarize our results in Section 5.

2

1: doconsider i=l,n
2: y(i) = rhs(i)
3: do j=low(i),high(i)
1: y(i) = y(i) - a(j)*y(column(j))
5 : end do

5 : end doconsider

Figure 1: An annotated loop

2 The Doconsider loop

2.1 Motivation

In many programs, e.g. iterative linear system solvers, a nest of loops may execute many
times. The results of a single run time analysis can be reused, as long as data structures
that determine dependency patterns are not overwritten. When dependency patterns in a
nest of loops do not depend on the values of variables or array elements computed within
the loop nest, we say that the nest of loops is start-time schedulable. In many cases,
when compile-time analysis fails, parallelization of start-time schedulable loops can be
performed during program execution.

Determination of when data structures can be written to during program execution
can be reasonably straightforward when the data structures are local to a procedure but is
a rather complex task when the data structures are passed to procedures or reside within
common blocks. Inter-procedural analysis is concerned with the study of such problems.

In our current implementation, the user will need to indicate that an array which
determines dependency patterns has been modified, by setting a flag. This would normally
entail a re-evaluation of the dependency structure. If mechanisms of the type we describe
in this paper are integrated into a parallelizing compiler with effective inter-procedural
analysis, it should be possible to avoid the need to set this flag. Next, we describe the
transformations that produce the inspector and executor procedures from user code.

2.1.1 Transformations Required for the Doconsider Loop

A compiler front end transforms an annotated loop into two separate code segments.
The first code segment, the inspector, reorders and partitions loop indices, the second code
segment, the executor, carries out the scheduled work. We provide a sketch of the required
transformations, using as an example a code segment that carries out a sparse triangular
solve, (Figure 1). A loop of the form shown in Figure 1, may be executed many times
during the running of a given program. Note that the data dependencies between the

3

1 : do i1,n
2: mywf =O
3: do j=low(i),high(i)
1: mywf = max(maxwfy(y(columnt(j))) Omywf)
5: end do
5 maxwfy~i) = mywf + 1

7: end do

Figure 2: A topological sort

1 do i=1,nlocal
la isched = schedule~i)

2 y(isched) = rhs(isched)
a if(isched. eq. BARRIER)
2b call barrier()
2c else

3 do jlow(isched) ,high~isched)
a index = column(j)

I y(sched) = y~sched) - a~j)*y~index)
5end do

5 end do

Figure 3: A Prescheduled loop

4

elements of y are determined by the values assigned to the data structure column during
program execution. A value of the outer loop index i, il has a dependence on another
value of the outer loop index i 2 if the computation of y(i1) requires y(i 2). The example
code shown in Figure 1 has been chosen for ease of explanation of the transformations
we will present shortly. In practice, we can handle multiple-nested loops and much more
complex right hand side expressions.

To parallelize such loops, the method we use is as follows: We first partition the indices
of the outer loop of Figure 1 into disjoint sets S, such that row substitutions in a set Si
may be carried out independently. To obtain the sets S, we perform a topological sort
of the directed acyclic dependence graph G that describes the dependencies between the
outer loop indices. Stage k of this sort is performed by placing into set Sk all indices of
G not pointed to by graph edges. Following this all edges that emanated frCm the indices
in SA are removed. The elements of S1 are said to belong to wavefront k.

A loop L in the source code is transformed into a new loop L' designed to assign a
wavefront number to each iteration of L.. Since the wavefront number for each index is
one plus the maximum of the wavefront numbers of the indices on which it depends, L can
simply sweep sequentially through the indices and calculate the wavefront for each index.
Figure 2 illustrates the code segment used to calculate the wavefronts corresponding to
each index in line 1 of Figure 1. The wavefront corresponding to index i is stored in
maxwfy(i). The wavefront information must then be used to create a schedule of outer
loop indices to be executed by each processor.

The code segment in Figure 3 is a simplified version of an executor corresponding to
Figure 1. This code segment runs on each processor and carries out a sequence of doall
loops in which each doall loop is separated from the next by a synchronization barrier.
The assignment of loop indices to processors is determined by the local array schedule
(line la). This array also determines the order in which loop iterations are carried out.
In addition, schedule also contains synchronization information; when an element of
schedule is equal to a constant BARRIER, a global synchronization is carried out (lines
2a,2b).

While the executor in Figure 3 will produce the correct solution if Figure 1 represents
a sparse triangular solve, the code segment does not take into account the possibility that
in the course of computing y(i1) we might use Y(i2) before it has been computed by this
nest of loops. We need to make sure that y(i 2) is not updated before the data stored in
y(i 2) is consumed. The dependence relation between y(i 2) and y(ii) is an example of an
antidependency [15].

One way we can deal with antidependencies is to modify the inspector (in this case
thc topological sort) so that the computation of wavefronts takes them into account.
Alternately, we can modify the executor so that we use both old and new versions of
arrays; in Figure 1 we would replace y with two arrays, yold and ynew. The executor
would then read from yold and write to ynew. Note that if the executor does not modify

5

1 call barrier()
C Begin loop nest
2 do i=1,nlocal
3 isched = schedule(i)

I y(isched) = rhs(isched)
5 do j=low(isched) ,high(isched)
5 index column(j)

while (ready(index) .ne. completed) end while
8 y(sched) = y(sched) - a(j)*y(index)

9 end do
10 ready(isched) = completed
11 end do

Figure 4: A Self-Executing loop

all elements of y, portions of array ynew must be copied into yold.

Instead of producing an executor that carries out a sequence of doall loops on consec-
utive wavefronts of topologically sorted indices, we can compute the sorted indices using
a modified doacross. We illustrate this transformation in Figure 4. The outer loop in
Figure 4 goes over the indices assigned to this processor (line 2). The shared array ready
is used to communicate the availability of array elements. When outer loop iteration
i is completed, y(schedule(i)) is available and ready(schedule(i)) is marked (line
10). In line 7 of Figure 4, a busy-wait is carried out until the array element required
for the computation is available. Note that during an invocation of the nest of loops,
each element of ready is written to only once (line 10) but can be read many times.
This form of synchronization is particularly effective in bus-based multiprocessors with
snooping caches since in such architectures the busy-waiting generates no bus traffic. Syn-
chronization mechanisms of this kind should also be quite effective in a pipelined multiple
instruction stream machines such as the (now defunct) Denelcor HEP [6], [8]. In (211 we
present details of how the modified doacross used here is implemented. In many cases, the
modified doacross loop itself can require a separate stage of execution time preprocessing;
an outline of this preprocessing and a study of associated overheads can be found in this
reference.

2.1.2 Efficient Calculation of the Topological Sort

The schedule of outer loop indices for each processor can be obtained by global scheduling,
i.e. assigning indices to processors in a way that evenly partitions the work in each
wavefront. For the running example in Figure 1, we would employ maxwfy from Figure 2
to produce a new array bywf that would list the indices in order of incrr- "g wavefront

6

1 doconsider ii =1, NI
2 do i2 = 1, N2

3 do i3 = 1, N3

do im = 1, Nm
z = f(il,i2 im)
A(z) = ik*B(il,..im) + A(C(..))*ij + D(..)*A(E(..))

end do

8 end do
9 end do
10 end doconsider

Figure 5: More Complex Loops

number. After this, we would evenly partition the indices in each wavefront between the
processors.

Alternately we could begin with a fixed assignment of indices to processors and use the
wavefront information to simply rearrange the local ordering of indices in each processor
in an attempt to increase parallelism.

On the Multimax/320, the sequential execution time required for both these operations
tends to be slightly less than the cost of a single triangular solve using the same matrix.
The topological sort can be parallelized to a degree by assigning consecutive indices across
the processors and by using busy-waits to assure that variable values have been produced
before being used. While local scheduling is almost completely parallelizable, it is not clear
how one would efficiently parallelize global scheduling. The interprocessor coordination
required for this rather fine grained computation -ppears to be prohibitive in the absence
of a fetch-and-add primitive.

2.1.3 More Complex Loops

In Section 2.1.1, (Figure 1) we presented a simple version of the doconsider loop. We
have implemented transformations that allow us to handle more complicated nested loop
structures. The doconsider loop in Figure 5 has multiple nested do loops and a complex
right hand side expression in statement 6. Currently, some restrictions are placed on the
left hand side index variable z. For each index z, A(z) can be written to multiple times.
However, partially computed values of A(z) cannot be used tn u rdate other elements of A.
Allowing partially computed values of A on the right hand sidc u an assignment statement

7

such as 6 adds significant complexity to the topological sort. Each index element z, must
be clustered with all other indices that use partially computed values of A(z) and each
such cluster must be scheduled as a unit on a single processor.

The transformation system uses a source to source compiler that employs a set of data
structures called the Blaze Intermediate Form or BIF graph to represent the parse tree [9].
On recognizing a doconsider loop, the system searches for an assignment statement of the
form shown in line 6, Figure 5. For each such statement that is encountered, an inspector
and an executor is generated. Each of these routines has n nested do loops, where n is
the nesting level of the assignment statement. The executor is analogous to that shown
in Figure 4.

2.1.4 Summary of Doconsider Transformations

We now provide a short stepwise description of the procedure which takes as input a code
of the type shown in Figure 1 and restructures it into a suitable parallel version. Steps
1 and 2 are performed at compile-time, while steps 3 and 4 are performed at run-time.
Notice that an outer loop iteration can depend upon several other iterations, as is seen
in (statement 4) of the code in Figure 1.

1. From the original loop, the code for the inspector is generated by the compiler.
During program execution this code determines the wavefront number of each index.

2. The loop in Figure 1 is transformed into a self-executing or prescheduled executor.

3. Immediately prior to the actual execution of the loop, the inspector computes the
wavefront numbers and the indices are sorted on the basis of these wavefronts.

4. The actual computation is now performed by each processor on its assigned subset
of indices, using one of the executors that have been generated, in step 2.

In the next section, we describe our model problems and present mathematical ex-
pressions that illustrate the load balance obtainable with the different executors.

3 Description and Analysis of Model Problems

3.1 Model Problems

We now present analytic results obtained through the study of two model problems. In
the following section, we will present empirical results from expr-;-'-nts on a shared
memory multiprocessor. The loop that we use to evaluate the dillctat scheduling and

synchronizatin strategies is depicted in Figure 1. The patterns of dependency between
loop iterations are controlled by the integer array column. By varying the definition of
colura we are able to explore the performance achieved by our different strategies over a
wide range of dependency patterns.

Many of the sparse triangular systems that we use as model problems arise from
incompletely factored matrices that were obtained from a variety of discretized partial
differential equations. The solution of these sparse triangular systems accounts for a large
fraction of the sequential execution time of linear solvers that use Krylov methods[3].
The dependencies encountered in solving these systems inhibit the parallelization of the
outer loop of row substitutions (line 1, Figure 1). A full description of the structure of
the triangular systems used in our experiments is found in [3], a brief definition of the
problems may be found in the appendix. We also employ a simple parameterized workload
that will be used to illustrate the tradeoffs between use of prescheduled and self-executing
doconsider loops. This workload generator functions by initializing data structure column
used in the loops depicted in Figure 1.

A dependency graph is generated as follows: We begin with a domain consisting of a
2-dimensional n x m mesh of points whose connections have yet to be established. Each
point (i,j) in the mesh is assigned an index number i x n+j. We generate graphs in which
the point (i,J) is linked to all points (q,r) located within a manhattan metric distance

D; i.e. where J i - q j + j 3 - r I < D. The array column is initialized so that it represents
the dependencies between the indices in a generated graph. This workload generator
generates a dependency graph in which both dependencies and antidependencies occur
because the value assigned to column(j) can be either less than or greater than j.

3.2 Analysis of a Model Problem

We use two model problems to compare the quality of load balance that can be obtained
using the prescheduled and the self-executing doconsider loop- We consider the first
model problem in some detail, this problem involves the solution of a lower triangular
system generated by the zero fill factorization of the matrix arising from a rectangular
mesh with a five point template. We will use a n by m domain and p < min(m,n)
processors. This problem is equivalent to solving the recurrence equation

zjj = rhs,,, - fi-, x z,-i,j - g'j-1 x zi,j(1)

for 1 < i < m and 1 < j < n, where f0, = go,j = fi,o = gt,o - 0. We can choose column,
low, high and a in Figure 1 so that y(i x n +j) in t.hat loop nest is equal to z,,j in
Equation 1.

We assume that all computations required to solve the problem would require time S

on a single processor, and that computation of earh iteration of the outer loop (statement
1) in Figure 1 takes time Tt,, = S/(mn) for kiis model problem. This ignores the

9

relatively minor disparities caused by the matrix rows represented by indices on the lower
and the left boundary of the domain. For each type of loop, we will now calculate an
estimate Elb of the efficiency that would be achieved if the only source of inefficiency were
due to imperfect load balance. At the end of this section, we will briefly consider another
model problem. This problem consists of solving an n by n dense triangular matrix with
unit diagonals.

3.2.1 Load Balance with Prescheduled Doconsider

To understand the relative performance of the two types of doconsider loops for the first
model problem, we need to specify the mapping of indices onto the processors. We will
describe this mapping using the recurrence equation problem formulation in Equation 1.
The global topological sort produces a list of indices sorted by wavefront. When we
define the arrays low, high, column and a in Figure 1 so that the solutions obtained are
equivalent to those in Equation 1, the topological sort produces a list L that corresponds to
arranging the indices in each wavefront in order of increasing index number. The indices
in L are assigned in a wrapped manner, i.e. the kth index in wavefront w is assigned to
processor k mod p.

When prescheduling is used, the computation is divided into wavefronts separated by
global synchronizations. Define MC(j) as the maximum number of indices computed
by any processor during wavefront j. It is clear that n + m - 1 wavefronts are required
to complete the computation. The computation time required to complete wavefront
j is equal to Ttt,.MC(J). The computation time required to complete the problem is
consequently

n+r-I

E TiterMC(j).

We now proceed to calculate MC(j). During wavefront j, a total of j indices must be
computed when 1 < i < min(m, n). Since the indices are assigned in a wrapped manner,

MC(j) = [-.

When min(m,n) j - n + m - min(m,n), a total of min(m,n) indices must be
completed during wavefront j. Due to the wrapped assignment of indices to processors,

MC(j) = Fmin(mn)].
P

Finally when n + m - min(m, n) < j !_ n + m - 1, a total of n + m - j indices must be
computed during wavefront j so

MCj) = in + m- j

P

10

The computational time needed to solve the problem Tc is given by

n+m-1

T = T it". E MC(j)
j=1

= 1: +n min(j, mnm+ n j)l
mn i=, P

By assumption, the sequential time to solve the problem is S = mnTiter. The estimated
efficiency Elb, if load imbalance were the only source of inefficiency would be sp Tc

3.2.2 Load Balance: Self-Executing Doconsider

Much of the load imbalance we saw in the prescheduled doconsider loop can be cor-
rected. During any wavefront j < min(m, n) - 1, where j is not a multiple of p, there
are p - j mod p idle processors. When j is a multiple of p, no processors are idle. The
failure to balance is essentially an end-effect; e.g., a wavefront has p + 1 work units with
equal computational demands, but only p processors are available. In [14] we rearrange
the global synchronizations in a way that obtains a tradeoff between improved load bal-
ance and the costs of the global synchronizations. While that mechanism is shown to
be advantageous for some problems, rearrangement of the global synchronizations does
require an extra stage of preprocessing.

Self-execution also eliminates these end effects. In the model problem we are present-
ing here, we can see that any given row substitution in a wavefront requires only two
solution values from the previous wavefront. It is possible to concurrently compute row
substitutions in consecutive wavefronts provided that we observe the dependencies. This
is taken care of naturally since the busy-wait synchronization mechanism ensures that
dependencies are in fact observed.

We can derive an expression for Emb for the self-executing case. Assuming again that
the time required to compute the solutions is identical for all indices, only the first and
last p - 1 wavefronts contribute to load imbalance. To see this, assume that solution
values are available for indices in list L through the index that corresponds to wavefront
w, i = C, (i.e. i = C,j = w - C + 1). All indices in L up to the index corresponding to
wavefront w + 1, i = C (i.e. i = C , j = w - C + 2) will have their dependencies satisfied,
and can be calculated simultaneously. The cumulative processor idle time is consequently
p(p - 1). Elb is thus given by

mn (2)
mn p(p- 1)

11

3.2.3 Load Balance: Doacross Loop

We now derive an expression Eb when a doacross loop is used to solve the problem. In
a doacross loop, each index k of y is assigned to processor k mod p; this corresponds to
assigning zij to processor (i x n + j) mod p. In this derivation, we assume that the time
required to multiply and subtract the terms f1-,, j x z,-1,j and gjj_ x zjj_ is equal to
half the time Tit, required to perform a loop iteration.

The processor q designated to compute zi,k is the same as the processor designated to
compute i-1,,- +1-k, 1 < k < p. As soon as a processor q finishes i-l,n-p+k, it can begin
to work on zi,k. For p > 3, a pipeline effect is created so that only Tit,/ 2 time is needed
to calculate each zi,. Let ti, represent the time at which zij is computed. It is convenient

to assume that t0,j = j/2, and straightforward to establish that ti,o = ti-1,,-,+3. Because
of the pipeline mentioned above, ti,1 = tjj+± + 1/2. From this observation, we can deduce
that tn P+2,m and hence that = m(np+2) + P22 Thus for the doacross,
E16 is equal to

2mn
p((n-p+ 2)m + p- 2)

Table 1 depicts the values of Elb for the model problem for domains of varying di-
mensions. We note that for values of m and n that are much larger than p, both the
prescheduled and self-executing doconsider will have a perfect load balance. The doacross
loop on the other hand exhibits an efficiency that decreases with increasing numbers of
processors with Elb equal to 2/p. On the other hand, if m = p+ 1, and n is large relative
to m, the self-executing doconsider achieves an Eb of 1.0 while the Elb in the prescheduled
doconsider case is only 1/2 + 1/2p. In the prescheduled doconsider, during most com-
putational wavefronts, one processor has to perform twice as much work as all the rest.
The global synchronizations required for the prescheduled doconsider force all processors
to wait for the busiest processor to finish. Because the doacross loop does not perform
index set reordering, we see a marked efficiency difference between the case m = p + 1, n
large and n = p + 1, m large. For the n = p + 1 case, Eb is equal to 1 + , while for
m = p + 1, Elb is equal to 2 /p. We obtain a better load balance using the doacross than
we do using the prescheduled doconsider when n is equal to p + 1, and m is large. When
both m and n are equal to p, we obtain a better load balance using the doacross than we
do with either type of doconsider.

Many problems of practical interest are somewhat less sparse than the model problem
analyzed here. When such a problem is to be solved using many processors, we may expect
dramatic performance differences between prescheduled and self-executing programs. To
illustrate this, we present the rather extreme (from our point of view) example of solving
a n by n dense triangular matrix having unit diagonals using n - 1 processors. Assume
Tlaxrr is the time required for a floating point multiply and add. The computation time
required to solve this system using self-execution is Taopy(n - 1). No parallelism at all is
obtained when one attempts to solve such a system when row substitutions are separated

12

Table 1: Model Problem Load Balance Efficiencies
Domain Prescheduled Self-Executing Doacross

Dimensions
m=n, both large 1 1 2/p

m=n=p p/(2p-1) p/(2p-1) 2p/(3p-2)
m=p, n large 1 1 2/p

m=p+l, n large 1/2 + 1/(2p) 1 2/p
n=p, m large 1 1 1

n=p+l, m large 1/2 + 1/(2p) 1 2/3 + 2/(3p)
n by n full

triangular system
p = n-i i/p (p+l)/(2p) (p+l)/(2 p)

by global synchronizations; each row substitution forms its own wavefront. The sequential
computation time and the prescheduled computation time are both To= n -1) Calcu-

2
lated only on the basis of load balance, both the self-executing efficiency and the doacross
efficiencies Elb are n/2(n - 1) while the prescheduled Elb is 1/(n - 1).

4 Experimental Results

In this section, we provide experimental results for the performance of the inspectors and
executors described in Section 2. The experiments described in this section also high-
light the overheads associated with the inspectors and the synchronization mechanisms
employed by the executors. The following timings were done on an Encore Multimax/320
with 13 megahertz APC/02 boards and version 2.1 of the FORTRAN compiler. Parallel
efficiency is defined as the ratio between the time required to solve a problem using an
optimized sequential version and the product of the time required on the same problem
by the multiprocessor code multiplied by the number of processors.

The inspectors and executors used in our experiments were coded by hand (the ex-
periments discussed here were performed to help us decide precisely how the doconsider
transformations should be implemented). The executors used were similar to those de-
picted in Figures 3 and 4. Antidependencies were handled by writing to a new version of
array y and by evaluating a conditional to determine whether references to array y should
refer to the old or the new version of y (this was described in Section 2.1.1).

13

Table 2: Parallel Time and Estimates for Prescheduled and Self-Executing Solves
Test Prescheduled Self-Executing Sort Doacross Sequential

Problem Time Time Time Time Time
SPE2 33 21 49 34 223
SPE5 29 23 100 45 241
5-PT 31 19 72 37 192
7-PT 56 56 204 84 615
9-PT 80 58 154 98 698

4.1 Multiprocessor Timings

4.1.1 Where Does the Time Go

In Table 2 we present multiprocessor timings on 16 processors for lower triangular solves
arising from the incompletely factored test problem matrices. In this table we present
the time required to solve the triangular systems using self-executing and prescheduled
executors. The schedule of loop iterations was produced using global scheduling. The
execution time required by the prescheduled executor was consistently either greater than
or roughly equal to the time required by the self-executing code. The same pattern of
results was observed for a wide variety of test matrices [22]. Table 2 also depicts the the
results of timings of an optimized sequential version of the program for each of the lower
triangular systems. For most of the problems tested, the parallel efficiencies obtained were
between 50 and 70 %. This table also depicts the time required to carry out a parallelized
global scheduling, this time ranged from 20 to 60 % of the sequential execution time.
Finally in Table 2 we depict the time required to carry out a doacross version of these
triangular solves. We see that the doacross loop is consistently less efficient than either
the prescheduled or the self-executing loops. For example, the self-executing form of
the executor for the SPE5 problem required 23 milliseconds, the prescheduled executor
required 29 milliseconds, while the doacross version of the solve required 45 milliseconds.

Recall that the self-executing loop is essentially a busy-wait doacross loop with a
reordered index set. We consequently expect that the self-executing executor will exhibit
more concurrency than the busy-wait doacross loop. Since the doacross loop does not have
to perform array references to access the reordered index set, we expect that the doacross
will also be accompanied by smaller overheads. The prescheduled executor performs work
corresponding to only one wavefront at a time. We fully expect the busy-wait doacross
loop to out perform the prescheduled executor in some problems, (e.g. a dense lower
triangular solve).

We performed an operation-count based analysis of the parallelism that could be ob-
tained given a particular assignment of indices to processors when either type of executor
was employed using global scheduling. The analysis made the assumption that the load
balance could be characterized solely by the distribution and scheduling of the floating

14

Table 3: Operation Count Efficiencies and Performance Predictions
Test P.S. S.E. P.S. P.S. S.E. S.E.

Problem Op. Count Op. Count Time Predict Time Predict
Efficiency Efficiency _ Time Time

SPE2 0.52 0.89 33 33 21 20
SPE5 0.70 0.96 29 30 23 22
5-PT 0.61 0.95 31 31 19 18
7-PT 0.94 0.98 56 56 56 57
9-PT 0.78 0.97 80 84 58 58

point operations. The efficiency estimated in this manner was computed for several test
problems on 16 processors and is depicted in Table 3 as operation count efficiency From
this analysis we were able to quantify the deleterious effects of prescheduling on load bal-
ance. To assure ourselves of the meaningfulness of the operation count efficiency metric,

we used operation count efficiencies along with estimates of other overheads to predict
parallel execution times. The methods for estimating other overheads were discussed in
some detail in [23]. We accounted for extra operations that had to be executed by the

parallel code, costs for logical and arithmetic operations required for synchronization as
well as contention for resources such as shared memory and bus access. We note from

Table 3 that self-executing methods yield superior operation count efficiencies for some
problems and that we are able to predict parallel execution times to a reasonable degree

of accuracy.

4.1.2 Results from synthetic workloads

In Figure 6, we compare the parallel efficiencies on 16 processors of the Encore Multimax

obtained using the doacross and prescheduled and self-executing doconsider executors.
We choose domain size n = m = 25 and vary the parameter D.

Recall that D = 1 produces a pattern of true dependencies identical to that in the
model problem described in Section 3.2. As D increases, we obtain increasing numbers
of true dependencies. In the limit of D = 25, we obtain a fully connected graph in
which every loop iteration depends on all earlier loop iterations. For D = 2 and above
the prescheduled executor exhibits monotonically decreasing parallel efficiencies. This
decrease is to be expected since as D increases, there is decreasing amounts of parallelism
for the prescheduled executor to exploit. When D = 1, the computation is small and the
sequential time for this problem was only 64 milliseconds, while for D = 12 the sequential
computation time was 2734 milliseconds. The relative contribution of synchronization
costs and other sources of overhead play an increasing role for small values of D. We will
examine in detail the effects of non-load balance related overheads in other experiments
to be presented later in this section.

15

Comparison of Docjnsider ond Doacross Loops

0 Doacross

0 7 0 Self-Executing

, Pre-Scheauled

0. (

05

C

O0 4

W0
3

02-

001

0 2 4 6 8 10 1?
D

Figure 6: Results from Synthetic Workload

The self-executing doconsider executor exhibited substantially higher parallel efficien-
cies than the prescheduled doconsider for all values of D. For D = 2, the parallel efficiency
for the self-executing doconsider was 0.62 while for the prescheduled doconsider the par-
allel efficiency was 0.41. For larger values of D the parallel efficiency of the self-executing
doconsider declines; but for D = 5 and above self-executing efficiencies are consistently
approximately twice prescheduled efficiencies. The efficiency obtained using the doacross
executor for D > 2 varied in a narrow range between 0.22 and 0.24. For values of D above
11, the efficiencies obtained by using the doacross executor did not vary significantly from
those obtained using the self-executing doconsider executor.

4.1.3 Effects of Local Reordering

We are interested in evaluating the role played by the synchronization mechanism in
determining performance, when indices are not repartitioned after a topological sort.
We compared the estimated efficiency of the same partition and schedule using global
synchronization and self-executing synchronization in a matr;:. Indices were assigned to
processors in a wrapped manner, i.e. for P processors index i was assigned to processor
i modulo P. The schedule was produced by performing a topological sort and scheduling
indices in each wavefront in order of increasing index number. From Figure 7, we can see
that the results obtained through the use of global synchronization can vary wildly with

16

Table 4: Global versus local sorting (self-executing)
Test Self-Executing Self-Executing Global Sort Local Sort Sequential

Problem Global Sort Local Sort Time Time Time
SPE2 21 30 49 30 223
SPE5 23 24 100 46 241
5-PT 24 28 72 39 192
7-PT 56 55 204 78 615
9-PT 58 63 154 101 1 698

the number of processors used. Often, many, if not all of the indices in a wavefront get
assigned to a single processor, resulting in sequential execution for that wavefront.

In a great many cases, data from all indices in a given wavefront are not actually
required by each index in the next wavefront. When self-executing synchronization is
employed, a pipeline sort of effect may be generated and we see substantial performance
benefits. Prescheduling on the other hand, appears to be much less robust.

4.1.4 Local v.s. Global Index Set Scheduling

We performed a set of experiments to examine the performance tradeoffs between local
and global index set scheduling defined in Section 1. We used only the self-executing
loop structures in the experiments in this section. Recall that when global index set
scheduling is used, the index set is sorted in increasing wavefront order. The index set is
then partitioned between processors in a wrapped manner. For the local sorting method,
the initial partition of indices is maintained, but their ordering is changed based upon
wavefront numbers. In [221 we present the sequential time required to solve each test
problem, the times required to perform a sequential and a parallel version of the sort
and the time required to rearrange indices globally. The time required to perform the
sequential scheduling is slightly lower than the time needed for performing a sequential
iteration. For example, in the case of SPE5, the time required to perform the sequential
sort plus the triangular solve adds up to 220 ms, while a completely sequential execution
takes 241 ms. Because we pay for the sorting only once, subsequent iterations of the code
will show a great advantage for the parallel code (23 ms vs. 240 ms on 16 processors).
The time required to produce a parallelized global schedule ranged from 17 percent to 61
percent of the time needed for a sequential iteration.

Thus, we conclude that local index set scheduling overhead does turn out to be much
less than global index set scheduling overhead, as is to be expected. Global schedul-
ing frequently but not invariably leads to slightly lower execution times than did local
scheduling. For example, in the case of SPE2, the global run time was 21 ms and the
local execution time was 30 ms but for SPE3 (not shown in Table). Global scheduling
gave a run time of 25 ms while local scheduling required 22 ms.

17

1.0

self-execute-

0.8

0.6 *

C-)

0.2

bar I *r

.18

5 Conclusions

When the data dependencies of the problem are known at compile-time, detection of
parallelism and task decomposition can automatically be performed by the compiler.
However, there are problems where the parallelism cannot be fully characterized during
compilation due to data dependencies that become manifest during run-time. In this
paper, we presented the doconsider construct and transformation rules which would allow
compilers to effectively parallelize such problems.

In this paper, we have reached the conclusion that for the types of workloads we

have investigated, loop iteration reordering can have a positive impact on performance.
The doacross related self-execution method almost always gives better results than does
prescheduling. Further, the improvement in performance that accrues as a result of global
topological sorting of indices as opposed to the less expensive local sorting, is not very
significant in the case of self-execution. Thus, we are left with a 2-dimensional solution
space, as depicted in Figure 8, which pictorially summarizes the findings reported in this
paper.

6 Appendix: Definition of Test Triangular Systems

The the triangular systems refered to in Section 3.1 were derived from the following partial
differential equation descretizations:

SPE2 This problem arises from the thermal simulation of a steam injection processes.
The grid is 6x6x5 with 6 unknowns per grid point, this yields a system with 1080
equations. The matrix is a block seven point operator with 6x6 blocks.

SPE5 This problem arises frcm a fully-implicit, simultaneous solution simulation of a
black oil model. It is a block seven point operator on a 16x23x3 grid with 3x3

blocks yielding 3312 equations.

5-PT The problem is a five point central difference discretization on a 63 x 63 grid; this
yields a system with 3969 equations.

7-PT The problem is a seven point central difference discretization on a 20 x 20 x 20 grid;
this yields a system with 8000 equations.

9-PT The problem is a nine point box scheme discretization on a 63 x 63 grid; this yields

a system with 3969 equations.

Acknowledgements: The authors would like to thank Dennis Gannon and Piyush

Mehrotra for supplying us with a Fortran parser linked to Blaze Intermediate Form data

structures. We would also like to thank Mike Wolfe, Doug Baxter, Martin Schultz and

19

Performance of Scheduling and Sorting Strategies

L
S0

C 0 Pe-fornnance Recommended:
a r performance reasonably

t can degrade robust, low overhead
catastrophically for setup

Performance Most robust alternative,
G robust but
I s prescheduling relatively high setup
o o limits exploitable time
b r concurrency

Sa t

Pre-Scheduled Self-Executing

Figure 8: Summary of Results

20

Stan Eisenstat for helpful discussions and Bob Voigt for his careful editing of various
versions of this manuscript.

References

[1] J. R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scientific
programs for parallel execution. In Con. Record, 14th POPL, January 1987.

[2] E. Anderson. Solving sparse triangular linear systems on parallel computers. Report
794, UIUC, June 1988.

[3] D. Baxter, J. Saltz, M. Schultz, S. Eisentstat, and K. Crowley An experimental
study of methods for parallel preconditioned krylov methods. In Proceedings of the
1988 Hypercube Multiprocessor Conference, Pasadena CA, pages 1698,1711, January
1988.

[4] R. Cytron. Doacross: Beyond vectorization for multiprocessors. In The Proceedings
of the ICPP, 1986, pages 836-844, 1986.

[5] K. Gallivan, W. Jalby, and D. Gannon. On the problem of optimizing data trans-
fers for complex memory systems. In Proceedings of the 1988 A CM International
Conference on Supercomputing , St. Malo France, pages 238,253, July 1988.

[6] M. C. Gilliland and Burton J. Smith. Hep: a semaphore-synchronized multiprocessor
with central control. In Proc. 1976 Summer Computer Simulation Conf., pages 57-62,
July 1976.

[7] A. Greenbaum. Solving sparse triangular linear systems using fortran with paralllel
extensions on the nyu ultracomputer prototype. Report 99, NYU Ultracomputer
Note, April 1986.

[8] Harry F. Jordan. Performance measurements on hep, a pipelined mimd computer. In
Proceedings of the 10th Annual International Symposium on Computer Architecture,
SIGARCH Newsletter, volume 11, pages 207-212, 1983.

[9] C. Koelbel. The BIF data structures user's manual. in preparation, Purdue Univer-
sity, West Lafayette, IN, 1987.

[10] C. Koelbel, P. Mehrotra, and J. Van Rosendale. Supporting shared data structures
on distributed memory architectures (to appear in 2nd ACM SIGPLAN Symposium
on Principles Practice of Parallel Programming, March 1990),. Report 90-7, ICASE,
January 1990.

[11] V. Krothapalli and P. Sadayappan. An approach to synchronization for parallel
computing. In The Proceedings of the 1988 conference on supercomputing, St. Malo,
1988, pages 573-581, 1988.

21

[121 Ewing L. Lusk and Ross A. Overbeek. A minimalist approach to portable, parallel
programming. In The Characteristics of Parallel Algorithms, Leah Jamieson, Dennis
Gannon, and Robert Douglass, Editors, pages 351-362, Cambridge Mass, 1987. MIT
Press.

[13] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nicol, and Kay Crowley. Prin-
ciples of runtime support for parallel processors. In Proceedings of the 1988 ACM
International Conference on Supercomputing, St. Malo France, pages 140-152, July
1988.

[14] D. M. Nicol and J. H. Saltz. Delay point schedules for irregular parallel computations.
International Journal of Parallel Programming, 18(1), Feb 1989.

[15] D. A. Padua, D. J. Kuck, and D. H. Lawrie. High-speed multiprocessors and compi-
lation techniques. IEEE Trans. on Computers, 29(9):763-776, September 1980.

[16] D. A. Padua and M. J. Wolfe. Advanced compiler optimizations for supercomputers.
CA CM, Dec 1986.

[17] C. Polychronopoulos and D. Kuck. Guided self-scheduling: A practical scheduling
scheme for parallel supercomputers. IEEE Transactions on Computers, 1987.

[18] J. Saltz. Methods for automated problem mapping. In The IMA Volumes in Mathe-
matics and its Applications. Volume IS: Numerical Algorithms for Modern Parallel
Computer Architectures Martin Schultz Editor. Springer-Verlag, 1988.

[19] J. Saltz. Aggregation methods for solving sparse triangular systems on multiproces-
sors. SIAM J. Sci. and Stat. Computation., 11(1):123-144, 1990.

[20] J. Saltz, K. Crowley, R. Mirchandaney, and Harry Berryman. Run-time scheduling
and execution of loops on message passing machines, (to appear in Journal Parallel
and Distributed Computing, April 1990). Report 89-7, ICASE, January 1989.

[21] J. Saltz and R. Mirchandaney. The preprocessed doacross loop. Report 90-11, ICASE
Interim Report, 1990.

[22] J. Saltz, R. Mirchandaney, and D. Baxter. Run-time parallelization and scheduling
of loops. Report 88-70, ICASE, December 1988.

[23] J. Saltz, R. Mirchandaney, and D. Baxter. Runtime parallelization and scheduling of
loops. In The Proceedings of the Symposium of Parallel Algorithms and Architectures,
Santa Fe, NM, June 1989.

[24] P. Tang and P. Yew. Processor self-scheduling for multiple nested parallel loops. In
The Proceedings of the ICPP, 1986, pages 528-535, 1986.

(25] Michael Wolfe. Optimizing Supercompilers for Supercomputers. The MIT Press,
Cambridge Mass, 1989.

22

NASA Report Documentation Page

1. Report No 2. Government Accession No. 3. Recipient's Catalog No.
NASA CR-182039
ICASE Report No. 90-34

4. Title and Subtitle 5 Report Date

RUN-TIME PARALLELIZATION AND SCHEDULING May 1990
OF LOOPS 6. Performing Organization Code

7 Authorls) 8. Performing Organization Report No

Joel H. Saltz 90-34
Ravi Mirchandaney 10 Work Unit No.
Kay Crowley

9. Performing Organization Name and Address 505-90-21-01

Institute for Computer Applications in Science 11. Contractor Grant No.
and Engineering NASI-18605

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Langley Research Center 14 Sponsoring Agency Code
Hampton, VA 23665-5225

15. Supplementary Notes Revised version of 88-70, submitted to Trans-
Langley Technical Monitor: actions on Computers; Excerpts in Proc. of
Richard W. Barnwell the Third Int. Conf. on Supercomputing, Crete

Greece, June 1989 and in Proc. of the First
Int. Symposium on Parallel Algorithms and

Final Report Architectures, Santa Fe, NM.
16 Abstract In this paper, we study run-time methods to automatically parallelize and
schedule iterations of a do loop in certain cases, where compile-time information
is inadequate. The methods we present in this paper involve execution time pre-
processing of the loop. At compile-time, these methods set up the framework for
performing a loop dependency analysis. At run-time, wave fronts of concurrently
executable loop iterations are identified. Using this wavefront information, loop
iterations are reordered for increased parallelism.

We utilize sybolic transformation rules to produde: (1) inspector proce-
dures that perform execution time preprocessing and (2) executors or transformed
versions of source code loop structures. These transformed loop structures carry
out the calculations planned in the inspector procedures. We present performance
results from experiments conducted on the Encore Multmax. These results illustrate
that run-time reordering of loop indices can have a significant impact on perfor-
mance. Furthermore, the overheads associated with this type of reordering are
amortized when the loop is executed several times with the same dependency struc-
ture.

17 Key Words (Suggested by Author(sl)) 18. Dstribution Statement

loop parallelization, shared memory, 59 - Mathe-atical and Computer Sciences
wavefront, level set, inspector, (General)
executor 61 - Computer Programming and Software

Unclassified - Unlimited

19. Selcurity, Clasaif .of thi.s repofll- 20 Secuty Claudi. (of tis pagal 21 No of pages 22, price
Unclassified Unclassified 24 A03

NASA FORM II OCT N

NASA-Aigle., iM

